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Abstract

Video description generation has been an im-
portant tool in modern day society, allowing
information extraction from videos as well as
providing a way for those with disabilities to
access video content. Traditional approaches
rely heavily on video transcripts and meta-
data to generate descriptive captions. In this
work, we propose a novel methodology for
dense video description generation that focuses
solely on visual data, bypassing the need for
textual transcripts. Using the information cap-
tured from keyframes, we generate coherent
and temporally-aligned dense captions for a
given video. Furthermore, we introduce a se-
mantic retrieval mechanism that leverages the
generated captions for efficient video search.
Our proposed pipeline for video caption gen-
eration emphasizes rich and coherent textual
summaries, but also facilitates efficient video
processing and retrieval, making it a scalable
solution for large video datasets.

T

|
)

Aclass of students
earing black gowns have|
gathered on a ground

holding a broom waiting over a ground

A boy and a girl wearing A student is flying on a broom
black gowns. The boy is overlooking a class of students

[ ¥
)

Output Summary:
A group of students in black gowns have gathered on the ground. Among them, a boy
and a girl, both in black gowns, are highlighted, with the boy holding a broom. Above, a
student is seen flying on a broom, observing the class from the air.

Figure 1: End-to-end sample of our system

1 Introduction

With the rapid growth of video content across vari-
ous domains, there is an increasing need for auto-
mated tools to understand and describe video data
effectively. Video description generation plays an
important role in extracting meaningful informa-
tion in a video content while providing improved
accessibility for individuals with visual impair-
ments. By transforming video data into concise, yet
descriptive, textual summaries, these systems en-
able improved understanding and retrieval of infor-
mation, particularly within large-scale datasets. As
we are bridging the domains of vision and language,
this can be classified as a video-to-text (VTT) prob-
lem (Perez-Martin et al., 2021).

Traditional video processing systems often rely
on video transcripts, audio cues, and metadata in
summarization (Otani et al., 2016). While effec-
tive, these methods face limitations in scenarios
where such inputs are unavailable or incomplete.
They also typically analyze a majority of frames
in a video, which results in significant computa-
tional overhead as well as large memory consump-
tion. This creates a need for efficient video analysis
in caption generation tasks, which are capable of
extracting visual content while minimizing redun-
dancy.

Additionally, video captioning has centered
around producing high-level, single-sentence de-
scriptions for a given video. They often miss one
key aspect — detail. Dense video captioning — de-
scribing events in the video with descriptive natural
language — is gaining popularity in research as it en-
ables video content to be better understood (Zhou
et al., 2018a).

2 Hypothesis

To address the challenges mentioned above, we
propose a methodology for dense video descrip-
tion generation that operates exclusively on visual



data. Our approach leverages keyframe extraction
to identify and summarize the most significant vi-
sual information from videos. By generating de-
tailed, coherent, and temporally-aligned captions
for these selected frames, we produce rich natural
language summaries that effectively describe the
contents of the video. We also introduce a semantic
retrieval mechanism that utilizes these generated
descriptions for video semantic search and retrieval
tasks.

3 Related Works

3.1 Video Summarization and Captioning

Video summarization is a widely explored area in
research, with efforts directed towards both video-
to-video summarization as well as multi-modal
video-to-text summarization. The latter, commonly
known as video captioning, initially focused on
producing one-sentence descriptions for localized
events in a video (Xu et al., 2016; Papalampidi and
Lapata, 2022). These methods typically combine
convolutional neural networks (CNNSs) for visual
feature extraction with simple language models,
such as LSTMs or RNNs, to generate text (Don-
ahue et al., 2016).

In recent times, dense video captioning has
gained popularity, where multiple events are de-
tected and described in a single video rather than
just the most significant one. Many researchers use
temporal action proposal methods to localize se-
quences containing specific events or actions of in-
terest, followed by a language model for generation
(Krishna et al., 2017a). A well-known language
model for dense video captioning is a self-attention
transformer, which can effectively capture long-
range dependencies (Zhou et al., 2018b). Addition-
ally, Hu et al. (2023) propose a dual video sum-
marization framework that integrates video sum-
marization and captioning tasks to enhance video
frame representation, demonstrating improved per-
formance in generating accurate, descriptive cap-
tions (Hu et al., 2023)

3.2 Video Semantic Search

Existing methods for video-text retrieval can be
broadly categorized into global and fine-grained ap-
proaches. Global video-sentence interaction meth-
ods align entire videos with sentences in a com-
mon feature space using separate text and video
encoders. Models like ClipBERT (Lei et al., 2021)
and CLIP4Clip (Luo et al., 2021) leverage pre-

trained image-text models to efficiently map videos
and sentences but fail to capture fine-grained re-
lationships between individual video frames and
words.

To address this, frame-word interaction methods
focus on detailed alignment by comparing video
frames and textual tokens. For instance, FILIP (Yao
et al., 2021) uses token-wise maximum similarity
for fine-grained alignment, while DRL (Wang et al.,
2022) reduces feature redundancy with weighted
token-wise interactions. However, these methods
still lack a hierarchical understanding of video and
text data, such as clip-phrase relationships. The
HCMI (Jiang et al., 2022) approach bridges this
gap by exploring multi-level interactions (video-
sentence, clip-phrase, and frame-word) to achieve
comprehensive video-text alignment.

Unlike previous methods that often rely on tex-
tual transcripts or metadata, our work generates
dense and coherent video descriptions solely from
visual data extracted from keyframes, eliminating
dependency on external text. Additionally, we in-
troduce a semantic retrieval mechanism that uses
these descriptions for efficient video and keyframe
search, providing a scalable end-to-end solution for
large video datasets.

4 Methodology

4.1 Pipeline

Our proposed pipeline for this project consists of
four main components:

1. Keyframe Extractor: Finds the most infor-
mative frames

2. Caption generator: Generates natural lan-
guage captions for each selected frame

3. Text Summarizer: Stitches together the
frame-level descriptions to produce the overall
video text description

4. Semantic Video Retrieval System: Given a
user query, returns relevant videos

Given a video as input, our system determines
the most significant frames, i.e. keyframes, and
generates a frame-level description for them. These
captions are then passed through a text summarizer
which stitches them together to produce a succinct,
yet detailed, coherent natural language summary
for the video. We can then take in a user search
query, transform it into a vector, and utilize the
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Figure 2: Video description & semantic search pipeline
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Hierarchical Navigable Small World (HNSW) al-
gorithm for rapid video retrieval from the video
database that has created from training.

We have focused primarily on the natural lan-
guage processing steps in the pipeline, i.e., the
frame-level text description generation and the cap-
tion stitching, performing numerous experiments
at both steps to find the techniques that produce the
best results overall.

4.2 Datasets
4.2.1 VideoXum

The primary dataset we are using is VideoXum
(Lin et al., 2024), a large-scale dataset for cross-
modal video summarization. This dataset contains
14K long-duration videos, each associated with
10 text summaries. Of these 14K videos, 8K are
used for training, 2K are used for validation and
4K are used for testing. This split is done in a
manner such that the video length distribution is
maintained. The VideoXum dataset is built on top
of ActivityNet Captions (Krishna et al., 2017b),
consisting of videos belonging to 200 distinct ac-
tivity categories.

4.2.2 Wiki Movie Plots with Summaries

We used the Wiki Movie Plots with Summaries
dataset (Priyavr, 2023) for finetuning in our text
summarizer component. This dataset contains
movie information for 35k movies such as release

year, title, origin, directory, cast, genre, wiki page,
plot, and plot summary.

4.2.3 Synthetic Dataset

We created a dataset to finetune our text summa-
rizer component. This dataset contains 1000 videos,
dense image captions for the videos, and an as-
sociated summary for the video taken from the
VideoXum dataset.

4.3 Data Preparation
4.3.1 Data Cleaning

The VideoXUM dataset consists of the following
features: video ID, duration, number of sampled
frames, timestamps, text summary and visual frame
summary. These video IDs correspond to YouTube
videos, so we create a mapping between the ID’s
and their associated URLs. We determine the
videos which are available with valid titles from
the dataset with and use these in training and eval-
uating our system.

4.3.2 Keyframe Extraction

Keyframe extraction serves as an important data
preparation step in our pipeline, enabling efficient
processing and analysis of video content. Keyframe
extraction focuses on identifying the most represen-
tative frames, which when put together can provide
a holistic understanding of the full video.

We have experimented with three approaches to
identify keyframes — Katna, Video-kf, and optical
flow analysis. First, Katna (KeplerLab, 2019), per-
forms K-means clustering on image histograms to
tag video frames. It then selects the best image
(with the least blur and highest Laplacian score)
from each cluster (Liang et al., 2024). The user
must explicitly pass the number of keyframes that
are to be returned by this algorithm. Next is Video-
kf (Averdones, 2019), a Python module which ex-
ploits Ffmpeg (Kiernan and Terzi, 2009) to extract
the I-frames (intra-frame coding) of a video to act
as the keyframes. Frames are selected that inde-
pendently best represent the entire video content
(Dibenedetto et al., 2024). The third approach is
optical flow analysis, where we found the pixel
difference between video frames and analyzed the
motion information to identify the most important
ones (Dong, 2023).

We found Katna to produce the best perfor-
mance among the three methods. Based on human
evaluation, it successfully captured the significant
moments in the video. In comparison, Video-kf



missed some key moments, and relying solely on
pixel differences proved unreliable for identifying
important events. We determined the number of
keyframes for each video to be extracted by Katna
using the following formula:

duration of vid
# keyframes = min <15, Hration of vIeeo (S)>

10
(D

4.4 Frame Captioning

In this section, we focus on generating descrip-
tive captions for the selected keyframes, which
form the foundation for the subsequent text sum-
marization step. We experimented with multiple
vision-language models to identify the most effec-
tive approach for dense, informative frame-level
descriptions.

Our initial attempts utilized ViT-GPT2 and BLIP
models for image captioning. ViT-GPT2 is a vi-
sion encoder-decoder model that combines the Vi-
sion Transformer (ViT) (Dosovitskiy et al., 2021)
for visual feature extraction and GPT-2 (Radford
et al., 2019) for text generation. It leverages ViT’s
capabilities for spatial feature extraction, paired
with GPT-2’s robust language modeling to gener-
ate captions. Similarly, we employed the pretrained
BLIP (Bootstrapping Language-Image Pretraining)
framework (Li et al., 2022), a vision-language
model that integrates both image understanding
and natural language generation. BLIP, trained on
the COCO dataset (Lin et al., 2014), performed
well in producing concise captions with accurate
object detection and relationships.

However, despite their success in standard image
captioning tasks, both ViT-GPT2 and BLIP gener-
ated captions that lacked the level of detail required
for dense video description. The descriptions were
often brief and failed to capture fine-grained contex-
tual information essential for comprehensive video
summarization.

To address these limitations, we explored more
advanced models capable of generating detailed
and dense captions. We first experimented with
the BART model (Lewis et al., 2019), a denois-
ing autoencoder for sequence-to-sequence tasks.
BART’s bidirectional encoder and autoregressive
decoder enabled the generation of more coherent
and contextually enriched descriptions. The output
was notably more comprehensive compared to ViT-
GPT2 and BLIP, providing improved coverage of
visual details within keyframes.

For further refinement, we adopted the Florence
model (Yuan et al., 2021), developed by Microsoft
for dense vision-language tasks. Florence inte-
grates a large-scale vision backbone optimized
for understanding complex scenes. When applied
to our keyframe dataset, it produced significantly
richer captions, capturing intricate details and spa-
tial relationships that aligned closely with our re-
quirements for dense video descriptions.

Through these iterative improvements, the Flo-
rence model emerged as the most effective solution
for dense frame captioning. It delivered captions
that were descriptive, informative, and well-suited
for subsequent summarization tasks, providing the
level of detail necessary for our pipeline.

4.5 Description Stitching (Summarization)

After successfully generating descriptions of the se-
lected frames, we combine them together into one
naturally worded description. We tried out Pegasus
(Zhang et al., 2020a) due to its abstractive summa-
rization capabilities and LED (Beltagy et al., 2020)
due to its capability of handling long sequences of
keyframe captions. However, we found that these
models tended to hallucinate when provided the
dense image captions. For our task, T5 (Raffel
et al., 2023) and Bart (Lewis et al., 2019) models
performed the best for the task of video summa-
rization. The encoder-decoder framework found
in Bart and the text-to-text framework found in
T5 made it ideal for the task of converting these
captions to a summarized format. We tested the
pre-trained Bart Large CNN model (Borgohain and
Agarwal, 2023) and two finetuned T5 models for
this task.

4.5.1 Finetuning

By fine-tuning T5, we hoped be able to effectively
adapt the existing parameters to suit our task with-
out the time and computational costs of training
a model from scratch. To do this, we used 28K
datapoints from the Wiki Movie Plot with Sum-
maries dataset (as mentioned in section 4.2.2) to
finetune one t5 model by using the Plot as input
and Plot Summary as target in hope that the dataset
would be similarly suited to our task. We also
created a Synthetic dataset (mentioned in section
4.2.3) for finetuning another T5 model on 1K dat-
apoints, taking the dense image captions for our
input and the VideoXUM summaries as the out-
put. Implementing this section represents the bulk
of our methodology — up till this point, we have



used off the shelf solutions, while now we try use
finetuning to produce models specifically suited for
the task of video summarization in the context of
keyframe extraction from videos.

4.6 Video Semantic Search

The video semantic search methodology comprises
of two main sections :

1. Video Data Loading to the Vector Database:
In our pipeline, the video description genera-
tion module ensures the creation of accurate,
concise, and informative textual descriptions
from videos. We extract keyframe descrip-
tions and convert them into 384-dimensional
embeddings using the SentenceTransformer
library (Reimers and Gurevych, 2019) with
the “all-MiniLM-L6-v2” pre-trained model.
The generated embeddings, along with their
associated metadata (e.g., keyframe caption,
keyframe ID, timestamp, and video ID), are
uploaded to a keyframe-index in a vector
database (Pinecone). In addition to keyframe-
level representations, we create video-level
descriptions (summaries), convert them into
384-dimensional embeddings, and store them
in a video-index along with relevant metadata
(video summary and video ID).

This process results in a curated vector
database containing structured embeddings
for both keyframe descriptions and video sum-
maries, providing a robust foundation for effi-
cient semantic search.

2. Video Retrieval Using Semantic Search:
Once the video and keyframe data are stored
in the vector database, we enable two core
retrieval functionalities: Video Search across
the Entire Database and Keyframe Search
within a Specific Video. For retrieval, the
user query is first converted into a 384-
dimensional vector using the same Sentence-
Transformer model. The query vector is then
compared with the stored embeddings using
the HNSW (Hierarchical Navigable Small
World) algorithm (Malkov and Yashunin,
2018), which is natively implemented in
Pinecone. The semantic search uses cosine
similarity as the base metric to identify the
most relevant results.

For both video-level and keyframe-level re-
trieval, we display the top 5 search results

based on their similarity scores. This seman-
tic search mechanism efficiently retrieves rele-
vant video content and keyframes, enabling a
scalable and effective solution for large video
datasets.

S Experiments

5.1 Evaluation

To evaluate our frame descriptions, we used the
Image-Paragraph Dataset by using a ROUGE score
to compare the keyframe description against the
descriptions in the dataset (Yeung et al., 2014). To
evaluate our summary descriptions (descriptions
generated from the keyframes), we will leverage
multiple evaluation methods, including LL.M-as-a-
Judge (Zheng et al., 2023), ROUGE (Lin, 2004),
BLEU (Papineni et al., 2002), and BERTScore
(Zhang et al., 2020b).

For LL.M-as-a-Judge, we provided the summary
to Google’s Gemini 1.0 Pro, and provided the fol-
lowing criteria: descriptiveness (is the description
vivid and clear), coherence (is the summary easy to
understand and does the paragraph structure con-
nect well), completeness (are all points covered
from the keyframe descriptions), fluency (is the
description grammatically correct), and concise-
ness (does the description summarize well, or does
it simply just put all the sentences together). Us-
ing Few-Shot Chain-of-Thought Prompting, we
would request a score for each of these criteria
from the LLM, which we would average together
to be our evaluation score. The prompts were de-
signed such that there were multiple examples for
scores from 1 to 5 for each of the criteria, while the
LLM was prompted with an explanation for each
of the scores.

Our other metrics for our summary descriptions
were ROUGE, BLEU, and BERTScore. In particu-
lar, we used ROUGE-1, which captures important
keywords without being too reliant on word order
like ROUGE-2 and ROUGE-L, and BERTScore-
F1, which leverages contextual embeddings from
the BERT model to capture semantic similarity
while maintaining a harmonic balance between pre-
cision and recall.

By running the evaluations over the generated
summaries, using the VideoXUM descriptions as
reference for ROUGE, BLEU, and BERTScore,
we were able to generate metrics for comparison
between our description stitching models.

Lastly, to evaluate the effectiveness of our seman-



tic search system, we use the SICK (Sentences In-
volving Compositional Knowledge) (Marelli et al.,
2014) dataset. Query-answer pairs are constructed
from sentence pairs with a similarity score of 5 (out
of 5). For each query, we retrieve the top 5 results
from the vector database and evaluate performance
using the following metrics:

1. Mean Reciprocal Rank (MRR): MRR mea-
sures how early the correct answer appears in
the ranked results. It is defined as:

1 1
MRR = —
NZRanki

1=

where Rank; is the position of the correct an-
swer for query ¢, and N is the total number
of queries. A higher MRR indicates better
ranking quality.

2. Adjusted Precision@1 (P@1): Precision@1
measures the proportion of queries for which
the correct answer appears at the top logical
rank, ignoring the query vector itself. It is
given by:

Number of Queries with Correct Answer at Rank 1

P@l =
Total Queries

3. Mean Similarity Score: This measures the
average similarity between the query and the
retrieved correct answer.

5.2 Baseline

As a baseline for our video captioning system, we
adopted a simple yet effective approach by concate-
nating captions generated for individual keyframes
to form a comprehensive description of the video.
While this method ensures that all key elements
are represented, it lacks coherency between frames,
often resulting in disjointed descriptions.

For our baseline for semantic search, we used
FAISS (Facebook AI Similarity Search) (Douze
et al., 2024), an open-source library designed
for fast and efficient similarity search in high-
dimensional vector spaces. FAISS provides both
exact and approximate nearest neighbor search,
making it ideal for large-scale vector retrieval tasks.

5.3 Results
5.3.1 Video Captioning

Method BLEU ROUGE-1 BERTScore-F1 LLM Judge
Baseline 0.0164  0.208 0.0124 3.029
BART 0.0163  0.246 0.0774 4.147
T5 (Movie)  0.0169  0.256 0.0700 4.124
T5 (Synthetic) 0.0178  0.265 0.0801 4.114

Table 1: Evaluation of different caption stitching (sum-
marization) approaches

Table 1 summarizes the evaluation metrics of the
methods we used to create the video summaries,
including the baseline. About 1000 video examples
with human-written descriptions were used to eval-
uate each method. The baseline naturally scores
the lowest on every metric except for BLEU, where
it slightly outperforms BART. However, because
BLEU focuses on comparing n-grams precision,
not accounting for much flexibility or synonymy,
it may vary in its consistency to score summariza-
tions. Most notably, T5 fined tuned on the Syn-
thetic dataset scores the highest on BLEU, ROUGE-
1, and BERTScore-F1, while having a relatively
strong score from the LLM Judge.

5.3.2 Video Retrieval Using Semantic Search

Method MRR Precision@1 Mean Similarity Score
Pinecone (HNSW) 0.8746 0.805 0.9528
FAISS (Baseline) 0.8529 0.805 0.9047

Table 2: Evaluation of HNSW for video sematic search

Using HNSW (Hierarchical Navigable Small
World) algorithm, we evaluated our semantic
search system on the SICK dataset. About 200
sentence pairs with a similarity score of 5/5 were
used to form query-answer pairs for evaluation.
As a baseline, we implemented the same seman-
tic search pipeline using (Facebook Al Similarity
Search - FAISS (Flat L2 Index). While both sys-
tems achieve the same Precision@1, Pinecone out-
performs FAISS with higher MRR and Mean Simi-
larity Score, demonstrating better ranking quality
and semantic relevance of the retrieved results.

5.3.3 Qualitative Results

Given below is an example of a series of extracted
keyframes from a video and the corresponding
dense captions generated by our proposed system:



A group of people in a small inflatable raft
on a river appears to be enjoying the ride.
The water is calm and there are no other
people visible. The sky is blue and the sun is
shining brightly, casting a warm glow over
the scene. The overall mood of the image is
peaceful and serene. The people in the raft
are holding onto the raft with their hands
and are looking up at the sky. It seems like
they are participating in a rescue or rafting
activity. The river is surrounded by a rocky
cliff and trees on both sides. There are trees
and hills in the distance, suggesting that the
video was taken in a rural area. A group of
four people, two men and two women, are
standing next to a large inflatable. They are
all wearing helmets and life jackets and are
floating on the water.

\. J

5.4 Dataset Availability

The VideoXum dataset (Lin et al., 2024) is a pub-
licly available dataset and can be found here. The
Wiki Movie Plots with Summaries dataset (Priyavr,
2023) can be obtained from Hugging Face here.

5.5 Code Availability

We have added all of our experiments
that we have conducted, to a GitHub
repository, NLPVideoDescription. The

link to our repository can be found here:
https://github.com/SRajrah/NLPVideoDescription.
Video descriptions using our proposed pipeline can
be generated using the code from the main branch.

6 Future Work

* Dynamic keyframe selection: Rather than
explicitly passing the number of keyframes
to be returned by extraction algorithm, we
could dynamically decide the number of sig-
nificant frames in a video. The number of

keyframes should depend on the complexity
of the video and not be based solely on dura-
tion (Chakraborty et al., 2015).

 Utilizing more training samples: A poten-
tial next step for our system is to enhance
its robustness by training it on more samples.
To improve training efficiency, we could pri-
oritize using shorter-duration videos, which
would reduce the computational overhead and
improve throughput during the training pro-
cess.

* Additional evaluation metrics: Though
BLEU and ROUGE score provide a good in-
sight into the performance of video captioning
systems, they rely heavily on exact semantic
matches (Schluter, 2017). We could evalu-
ate our system using a more flexible metric
while still ensuring certain keyword matches
are found.

* Output post-processing: While the output
consistently summarizes the captions in a con-
cise yet detailed manner, it occasionally in-
cludes that the content it is summarizing is an
image. We should include a methodology to
post-process the output, such that we do not
have any indication that the video was bro-
ken into keyframes in the summary. We could
do this through adding another LLM to the
pipeline which is in charge of post-processing
the summary.

7 Conclusion

We proposed a methodology for dense video de-
scription generation geared towards creating de-
tailed summaries that effectively describes the con-
tents of the video. Additionally, we introduced a
semantic retrieval mechanism that uses these gen-
erated descriptions for video semantic search and
retrieval tasks. Our results show that we have suc-
cessfully achieved the first objective. Our frame-
work, which utilizes a T5 model fine-tuned on a
synthetic dataset we created, outperforms the base-
line approach of concatenating key frame captions.

The generated descriptions capture a significant
amount of information, including the setting, ac-
tions of people and animals, positional details, and
more. This is a significant improvement over typi-
cal video textual summaries, which tend to provide
very simple summaries rather than a comprehen-
sive play-by-play description. Using these descrip-


https://huggingface.co/datasets/jylins/videoxum
https://huggingface.co/datasets/vishnupriyavr/wiki-movie-plots-with-summaries
https://github.com/SRajrah/NLPVideoDescription

tions as a basis for video comparison has also been
shown to outperform the baseline methodology.
This is due to the additional contextual and seman-
tic details included in the generated descriptions,
which provide more information for comparison
than the simplified summaries of other video-to-
text summarization models.

In conclusion, our methodology not only en-
hances the quality and granularity of video descrip-
tions, but also provides an improvement in video
semantic search and retrieval tasks, making it a
valuable addition to the field of video content un-
derstanding.
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